top of page

Seminar series speakers 2023 - 2024

Anthony Photo.jpeg

Anthony Covarrubias

Assistant Professor


September 12th, 2023                 Register Here   

12pm EST                

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.


Achille Broggi

Assistant Professor

Centre d'Immunologie de Marseille-Luminy

September 26th, 2023                 Register Here  

 7am UTC, 9am CET, 3pm HKT        

The mucosae represent the border between our body and the environment, and they act as the first barrier against infections. Therefore, inflammatory responses must be tightly regulated to combat infection without causing excessive self-damage or interfering with the repair process. An imbalance in these processes could result in the loss of barrier function and tissue functionality. Achille Broggi and his team study the interplay between the immune system and the mucosal layer, with a particular interest in understanding how immune mediators production and functions are regulated in the intestinal mucosa and how they regulate the pathogenesis of inflammatory bowel disease (IBD).

MIT Bio - HSW_edited.jpg

Harikesh S. Wong

Assistant Professor


October 10th, 2023                 Register Here   

 12pm EST          

The immune system mounts destructive responses to protect the host from threats, including pathogens and tumours. However, a trade-off emerges: if immune responses cause too much damage, they can compromise host tissue function. Conversely, if they fail to generate sufficient damage, the host may succumb to a given threat. The Wong lab investigates how coordinated communication between cells gives rise to dynamic circuits that steer ongoing immune responses toward desired target values, both in time and space. To this end, we employ various interdisciplinary methods—including advanced fluorescence microscopy, computational modelling, and inducible gene perturbations—to resolve, model, and manipulate immune cell behaviours directly in situ. Ultimately, we aim to understand how imbalanced circuit functions lead to immune-related disorders, including autoimmunity, chronic infection, and cancer.

bottom of page