top of page

Seminar series speakers 2023 - 2024

Anthony Photo.jpeg

September 12th, 2023                 Register Here   

12pm EST                

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Anthony Covarrubias

Assistant Professor

UCLA

Broggi_Headshot.png

September 26th, 2023                 Register Here                    Seminar recording

7am UTC, 9am CET, 3pm HKT

The mucosae represent the border between our body and the environment, and they act as the first barrier against infections. Therefore, inflammatory responses must be tightly regulated to combat infection without causing excessive self-damage or interfering with the repair process. An imbalance in these processes could result in the loss of barrier function and tissue functionality. Achille Broggi and his team study the interplay between the immune system and the mucosal layer, with a particular interest in understanding how immune mediators production and functions are regulated in the intestinal mucosa and how they regulate the pathogenesis of inflammatory bowel disease (IBD).

Achille Broggi

Assistant Professor

Centre d'Immunologie de Marseille-Luminy

MIT Bio - HSW_edited.jpg

October 10th, 2023                 Register Here

12pm EST

The immune system mounts destructive responses to protect the host from threats, including pathogens and tumours. However, a trade-off emerges: if immune responses cause too much damage, they can compromise host tissue function. Conversely, if they fail to generate sufficient damage, the host may succumb to a given threat. The Wong lab investigates how coordinated communication between cells gives rise to dynamic circuits that steer ongoing immune responses toward desired target values, both in time and space. To this end, we employ various interdisciplinary methods—including advanced fluorescence microscopy, computational modelling, and inducible gene perturbations—to resolve, model, and manipulate immune cell behaviours directly in situ. Ultimately, we aim to understand how imbalanced circuit functions lead to immune-related disorders, including autoimmunity, chronic infection, and cancer.

Harikesh Wong

Assistant Professor

MIT

Pallet.jpg

October 24th, 2023                 Register Here                    

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Laura Pallet

Assistant Professor

University College London

png-clipart-silhouette-man-silhouette-animals-silhouette-thumbnail.png

November 14th, 2023                 Register Here                    

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Rodrigo Nalio Ramos

Scientific Resesarcher

Instituto D'Or de Pesquisa e Ensino

Giulia-Adriani.jpg

November 28th, 2023                 Register Here                    

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Guilia Adriani

Assistant Professor

Singapore Immunology Network

Peiwen-Chen-1-1-265x265.jpg

December 12th, 2023                 Register Here       

12pm EST            

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Peiwen Chen

Assistant Professor

Northwestern University

png-clipart-silhouette-man-silhouette-animals-silhouette-thumbnail.png

December 26th, 2023                 Register Here                    

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Heping Xu

Assistant Professor

Alok.jpg

January 9th, 2024                 Register Here                    Seminar recording

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Alok Joglekar

Assistant Professor

University of Pittsburg

png-clipart-silhouette-man-silhouette-animals-silhouette-thumbnail.png

January 23th, 2024                 Register Here                    Seminar recording

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Ankur Sharma

Assistant Professor

konnikova-liza-243571.jpg

February 13th, 2024                 Register Here                    Seminar recording

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Liza Konnikova

Assistant Professor

Yale

png-clipart-silhouette-man-silhouette-animals-silhouette-thumbnail.png

February 27th, 2024                 Register Here                    Seminar recording

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Diletta DiMitri

Assistant Professor

Istituto Clinico Humanitas 

justin_eyquem__phd__ms.jpg

March 12th, 2024                 Register Here                    Seminar recording

12pm EST

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Justin Erquem

Assistant Professor

UCSF

Correia_headshot.png

March 26th, 2024                 Register Here                    Seminar recording

Ana Luisa Correia is an enthusiastic Cancer Biologist with a main interest in understanding what makes a tissue favorable or not to metastasis, and leverage this biology into therapeutic interventions that reliably prevent the emergence of metastases in patients with cancer. Anahas developed a tool to follow dormant disseminated tumor cells live, offering opportunities to investigate the anatomical distribution, composition and dynamics of dormant reservoirs within and across distant sites. This approach has steered the discovery of a pivotal role for a part of the innate branch of the immune system, the natural killer cells, in luling disseminated tumor cells into dormancy, and how disruption in liver physiology breaches the NK cell barrier to metastasis. This provides a foundational framework for studying the dynamics of antimetastatic innate immunity within and across sites, which the Correia Lab has been pursuing at the Champalimaud Foundation in Lisbon.

Ana Luisa Correia

Assistant Professor

Champalimaud Foundation

nowosc01-hero_edited.jpg

April 9th, 2023                 Register Here                    Seminar recording

12pm EST

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Carla Nowosad

Assistant Professor

NYU

yasutaka_okabe.jpg

April 23rd, 2024                 Register Here                    Seminar recording

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Yasutaka Okabe

Associate Professor

Osaka University

headshot-wang-v3.jpg

May 14th, 2024                 Register Here                    Seminar recording

12pm EST

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Jun Wang

Assistant Professor

NYU

Untitled.jpg

May 28th, 2024                 Register Here                    Seminar recording

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Ho-Keun Kwon

Assistant Professor

Yonsei University

College of Medicine

Faculty-portrait-BSD-Meghan-Koch-2.jpg

June 11th, 2024                 Register Here                    Seminar recording

12pmPST

Dr. Covarrubias is a macrophage biologist with expertise in immuno-metabolism, and how inflammation and metabolism are integrated to regulate metabolic health and disease states including aging. Dr. Covarrubias identified the nutrient-sensing Akt-mTORC1 pathway as a critical regulator of macrophage polarization. He also showed that activation of the Akt-mTORC1 target ACLY catalyzes the increase in macrophage cytosolic/nuclear pools of acetyl-CoA. These findings suggest how nutrient and metabolic status can fine-tune macrophage function via nutrient sensing pathways. Dr. Covarrubias’ recent work is focused on how diet and aging-related inflammation impacts the aging process. In a recent manuscript he showed that the decline of NAD+ during aging is driven by the activation of tissue resident macrophages via senescent cells. As senescent cells progressively accumulate in aging tissues, these results highlight a new causal link between visceral tissue senescence, NAD+, and immuno-metabolic dysregulation during aging, an active area of investigation in the Covarrubias Lab at UCLA.

Meghan Koch

Assistant Professor

Fred Hutchinson Cancer Center

Picture1.jpg

June 25th, 2024                 Register Here                    Seminar recording

The Zhou lab investigates the intricate immune circuits that exist between tumors and the related immune organs. Our primary focus lies in understanding the generation and perturbation of the adaptive anti-tumor response during tumor initiation and progression. At the age of immunotherapy era, we also delve into comprehending the immunological mechanisms underlying immune regimen treatments, such as cytokines and cellular therapies. Furthermore, our lab pursues pharmacological designing novel molecules that align with these immunological insights. Our ultimate goal is to tackle cancer "from bench to bed" and foster new hope in patients.

Ting Zhou

Assistant Professor

Westlake University

bottom of page